New state of light revealed with photon-trapping method
01.05.2014 - A theoretical physicist has explained a way to capture particles of light called photons, even at room temperature, a feat thought only possible at bone-chillingly cold temperatures.

Alex Kruchkov, a doctoral student at the Swiss Federal Institute of Technology (EPFL), has built the first quantitative mathematical model for trapping and condensing light under realistic conditions.
Light consists of tiny quantum particles called photons. One of the most spectacular properties of quantum particles is that they can condense or lose their individual identity and behave like clones of each other, becoming a single gigantic wave called a Bose-Einsteincondensate (BEC). [Wacky Physics: The Coolest Little Particles in Nature]
Usually, it happens at extremely low temperatures — less than a micro-kelvin, or a millionth of a degree above absolute zero. But "one of the most exciting things about the BEC of light is that it happens at room temperature," said Henrik Ronnow of EPFL, who didn't take part in the study.